MakeItFrom.com
Menu (ESC)

S39277 Stainless Steel vs. S43037 Stainless Steel

Both S39277 stainless steel and S43037 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 79% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S39277 stainless steel and the bottom bar is S43037 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 250
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
25
Fatigue Strength, MPa 480
160
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 80
77
Shear Strength, MPa 600
260
Tensile Strength: Ultimate (UTS), MPa 930
410
Tensile Strength: Yield (Proof), MPa 660
230

Thermal Properties

Latent Heat of Fusion, J/g 300
280
Maximum Temperature: Corrosion, °C 450
510
Maximum Temperature: Mechanical, °C 1100
880
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
25
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.4

Otherwise Unclassified Properties

Base Metal Price, % relative 23
9.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 4.2
2.3
Embodied Energy, MJ/kg 59
32
Embodied Water, L/kg 180
120

Common Calculations

PREN (Pitting Resistance) 43
18
Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
88
Resilience: Unit (Modulus of Resilience), kJ/m3 1070
130
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
15
Strength to Weight: Bending, points 27
16
Thermal Diffusivity, mm2/s 4.2
6.7
Thermal Shock Resistance, points 26
14

Alloy Composition

Carbon (C), % 0 to 0.025
0 to 0.030
Chromium (Cr), % 24 to 26
16 to 19
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 56.8 to 64.3
77.9 to 83.9
Manganese (Mn), % 0 to 0.8
0 to 1.0
Molybdenum (Mo), % 3.0 to 4.0
0
Nickel (Ni), % 6.5 to 8.0
0
Nitrogen (N), % 0.23 to 0.33
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.8
0 to 1.0
Sulfur (S), % 0 to 0.0020
0 to 0.030
Titanium (Ti), % 0
0.1 to 1.0
Tungsten (W), % 0.8 to 1.2
0