MakeItFrom.com
Menu (ESC)

S40977 Stainless Steel vs. ASTM A182 Grade F22V

Both S40977 stainless steel and ASTM A182 grade F22V are iron alloys. They have 89% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S40977 stainless steel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
21
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
74
Shear Strength, MPa 320
420
Tensile Strength: Ultimate (UTS), MPa 510
670
Tensile Strength: Yield (Proof), MPa 310
460

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 720
460
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 25
39
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 6.5
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
2.5
Embodied Energy, MJ/kg 27
35
Embodied Water, L/kg 97
61

Common Calculations

PREN (Pitting Resistance) 12
5.6
Resilience: Ultimate (Unit Rupture Work), MJ/m3 92
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
570
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 6.7
11
Thermal Shock Resistance, points 18
19

Alloy Composition

Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.030
0.11 to 0.15
Chromium (Cr), % 10.5 to 12.5
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 83.9 to 89.2
94.6 to 96.4
Manganese (Mn), % 0 to 1.5
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0.3 to 1.0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0 to 0.030
0
Phosphorus (P), % 0 to 0.040
0 to 0.015
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35