MakeItFrom.com
Menu (ESC)

S41050 Stainless Steel vs. S44537 Stainless Steel

Both S41050 stainless steel and S44537 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 86% of their average alloy composition in common.

For each property being compared, the top bar is S41050 stainless steel and the bottom bar is S44537 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
21
Fatigue Strength, MPa 160
230
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 77
80
Shear Modulus, GPa 76
79
Shear Strength, MPa 300
320
Tensile Strength: Ultimate (UTS), MPa 470
510
Tensile Strength: Yield (Proof), MPa 230
360

Thermal Properties

Latent Heat of Fusion, J/g 270
290
Maximum Temperature: Corrosion, °C 390
530
Maximum Temperature: Mechanical, °C 720
1000
Melting Completion (Liquidus), °C 1440
1480
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 27
21
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
3.0

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.9
3.4
Embodied Energy, MJ/kg 27
50
Embodied Water, L/kg 97
140

Common Calculations

PREN (Pitting Resistance) 12
26
Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
95
Resilience: Unit (Modulus of Resilience), kJ/m3 140
320
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 17
18
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 7.2
5.6
Thermal Shock Resistance, points 17
17

Alloy Composition

Aluminum (Al), % 0
0 to 0.1
Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 10.5 to 12.5
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 84.2 to 88.9
69 to 78.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.0
0 to 0.8
Nickel (Ni), % 0.6 to 1.1
0 to 0.5
Niobium (Nb), % 0
0.2 to 1.0
Nitrogen (N), % 0 to 0.1
0 to 0.040
Phosphorus (P), % 0 to 0.045
0 to 0.050
Silicon (Si), % 0 to 1.0
0.1 to 0.6
Sulfur (S), % 0 to 0.030
0 to 0.0060
Titanium (Ti), % 0
0.020 to 0.2
Tungsten (W), % 0
1.0 to 3.0