MakeItFrom.com
Menu (ESC)

S41425 Stainless Steel vs. AISI 403 Stainless Steel

Both S41425 stainless steel and AISI 403 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S41425 stainless steel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
16 to 25
Fatigue Strength, MPa 450
200 to 340
Poisson's Ratio 0.28
0.28
Reduction in Area, % 51
47 to 50
Shear Modulus, GPa 77
76
Shear Strength, MPa 570
340 to 480
Tensile Strength: Ultimate (UTS), MPa 920
530 to 780
Tensile Strength: Yield (Proof), MPa 750
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 280
270
Maximum Temperature: Corrosion, °C 390
390
Maximum Temperature: Mechanical, °C 810
740
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 16
28
Thermal Expansion, µm/m-K 10
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.7
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
6.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.9
1.9
Embodied Energy, MJ/kg 40
27
Embodied Water, L/kg 120
99

Common Calculations

PREN (Pitting Resistance) 21
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 1420
210 to 840
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 33
19 to 28
Strength to Weight: Bending, points 27
19 to 24
Thermal Diffusivity, mm2/s 4.4
7.6
Thermal Shock Resistance, points 33
20 to 29

Alloy Composition

Carbon (C), % 0 to 0.050
0 to 0.15
Chromium (Cr), % 12 to 15
11.5 to 13
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 74 to 81.9
84.7 to 88.5
Manganese (Mn), % 0.5 to 1.0
0 to 1.0
Molybdenum (Mo), % 1.5 to 2.0
0
Nickel (Ni), % 4.0 to 7.0
0 to 0.6
Nitrogen (N), % 0.060 to 0.12
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.0050
0 to 0.030