MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. AISI 434 Stainless Steel

Both S42300 stainless steel and AISI 434 stainless steel are iron alloys. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is AISI 434 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 9.1
24
Fatigue Strength, MPa 440
220
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Shear Strength, MPa 650
330
Tensile Strength: Ultimate (UTS), MPa 1100
520
Tensile Strength: Yield (Proof), MPa 850
320

Thermal Properties

Latent Heat of Fusion, J/g 270
280
Maximum Temperature: Corrosion, °C 380
410
Maximum Temperature: Mechanical, °C 750
880
Melting Completion (Liquidus), °C 1470
1510
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 25
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.4
Embodied Energy, MJ/kg 44
33
Embodied Water, L/kg 110
120

Common Calculations

PREN (Pitting Resistance) 21
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
260
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 39
19
Strength to Weight: Bending, points 30
18
Thermal Diffusivity, mm2/s 6.8
6.7
Thermal Shock Resistance, points 40
19

Alloy Composition

Carbon (C), % 0.27 to 0.32
0 to 0.12
Chromium (Cr), % 11 to 12
16 to 18
Iron (Fe), % 82 to 85.1
78.6 to 83.3
Manganese (Mn), % 1.0 to 1.4
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.0
0.75 to 1.3
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.030
Vanadium (V), % 0.2 to 0.3
0