MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. ASTM A182 Grade F122

Both S42300 stainless steel and ASTM A182 grade F122 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is ASTM A182 grade F122.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 330
220
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 9.1
23
Fatigue Strength, MPa 440
320
Poisson's Ratio 0.28
0.28
Reduction in Area, % 22
45
Shear Modulus, GPa 77
76
Shear Strength, MPa 650
450
Tensile Strength: Ultimate (UTS), MPa 1100
710
Tensile Strength: Yield (Proof), MPa 850
450

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 750
600
Melting Completion (Liquidus), °C 1470
1490
Melting Onset (Solidus), °C 1420
1440
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 25
24
Thermal Expansion, µm/m-K 10
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
10
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
12
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 3.2
3.0
Embodied Energy, MJ/kg 44
44
Embodied Water, L/kg 110
100

Common Calculations

PREN (Pitting Resistance) 21
17
Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
140
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
520
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 39
25
Strength to Weight: Bending, points 30
22
Thermal Diffusivity, mm2/s 6.8
6.4
Thermal Shock Resistance, points 40
19

Alloy Composition

Aluminum (Al), % 0
0 to 0.020
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.27 to 0.32
0.070 to 0.14
Chromium (Cr), % 11 to 12
10 to 11.5
Copper (Cu), % 0
0.3 to 1.7
Iron (Fe), % 82 to 85.1
81.3 to 87.7
Manganese (Mn), % 1.0 to 1.4
0 to 0.7
Molybdenum (Mo), % 2.5 to 3.0
0.25 to 0.6
Nickel (Ni), % 0 to 0.5
0 to 0.5
Niobium (Nb), % 0
0.040 to 0.1
Nitrogen (N), % 0
0.040 to 0.1
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
1.5 to 2.5
Vanadium (V), % 0.2 to 0.3
0.15 to 0.3
Zirconium (Zr), % 0
0 to 0.010