MakeItFrom.com
Menu (ESC)

S42300 Stainless Steel vs. Grade 35 Titanium

S42300 stainless steel belongs to the iron alloys classification, while grade 35 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S42300 stainless steel and the bottom bar is grade 35 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 9.1
5.6
Fatigue Strength, MPa 440
330
Poisson's Ratio 0.28
0.32
Reduction in Area, % 22
23
Shear Modulus, GPa 77
41
Shear Strength, MPa 650
580
Tensile Strength: Ultimate (UTS), MPa 1100
1000
Tensile Strength: Yield (Proof), MPa 850
630

Thermal Properties

Latent Heat of Fusion, J/g 270
420
Maximum Temperature: Mechanical, °C 750
320
Melting Completion (Liquidus), °C 1470
1630
Melting Onset (Solidus), °C 1420
1580
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 25
7.4
Thermal Expansion, µm/m-K 10
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.5
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 5.2
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
37
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 3.2
33
Embodied Energy, MJ/kg 44
530
Embodied Water, L/kg 110
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93
49
Resilience: Unit (Modulus of Resilience), kJ/m3 1840
1830
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 39
61
Strength to Weight: Bending, points 30
49
Thermal Diffusivity, mm2/s 6.8
3.0
Thermal Shock Resistance, points 40
70

Alloy Composition

Aluminum (Al), % 0
4.0 to 5.0
Carbon (C), % 0.27 to 0.32
0 to 0.080
Chromium (Cr), % 11 to 12
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 82 to 85.1
0.2 to 0.8
Manganese (Mn), % 1.0 to 1.4
0
Molybdenum (Mo), % 2.5 to 3.0
1.5 to 2.5
Nickel (Ni), % 0 to 0.5
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.5
0.2 to 0.4
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
88.4 to 93
Vanadium (V), % 0.2 to 0.3
1.1 to 2.1
Residuals, % 0
0 to 0.4