MakeItFrom.com
Menu (ESC)

S43037 Stainless Steel vs. S44627 Stainless Steel

Both S43037 stainless steel and S44627 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 90% of their average alloy composition in common. There are 34 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is S43037 stainless steel and the bottom bar is S44627 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
170
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 25
24
Fatigue Strength, MPa 160
200
Poisson's Ratio 0.28
0.27
Rockwell B Hardness 77
79
Shear Modulus, GPa 77
80
Shear Strength, MPa 260
310
Tensile Strength: Ultimate (UTS), MPa 410
490
Tensile Strength: Yield (Proof), MPa 230
300

Thermal Properties

Latent Heat of Fusion, J/g 280
290
Maximum Temperature: Corrosion, °C 510
470
Maximum Temperature: Mechanical, °C 880
1100
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1400
1400
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 25
17
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
14
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 2.3
2.9
Embodied Energy, MJ/kg 32
41
Embodied Water, L/kg 120
160

Common Calculations

PREN (Pitting Resistance) 18
30
Resilience: Ultimate (Unit Rupture Work), MJ/m3 88
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130
220
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 15
18
Strength to Weight: Bending, points 16
18
Thermal Diffusivity, mm2/s 6.7
4.6
Thermal Shock Resistance, points 14
16

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.010
Chromium (Cr), % 16 to 19
25 to 27.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 77.9 to 83.9
69.2 to 74.2
Manganese (Mn), % 0 to 1.0
0 to 0.4
Molybdenum (Mo), % 0
0.75 to 1.5
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0.050 to 0.2
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0.1 to 1.0
0