MakeItFrom.com
Menu (ESC)

S44536 Stainless Steel vs. C69400 Brass

S44536 stainless steel belongs to the iron alloys classification, while C69400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44536 stainless steel and the bottom bar is C69400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 22
17
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
42
Shear Strength, MPa 290
350
Tensile Strength: Ultimate (UTS), MPa 460
570
Tensile Strength: Yield (Proof), MPa 280
270

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Maximum Temperature: Mechanical, °C 990
170
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1390
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 21
26
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
6.2
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
6.7

Otherwise Unclassified Properties

Base Metal Price, % relative 13
27
Density, g/cm3 7.7
8.3
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 41
44
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
80
Resilience: Unit (Modulus of Resilience), kJ/m3 200
340
Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 17
19
Strength to Weight: Bending, points 17
18
Thermal Diffusivity, mm2/s 5.6
7.7
Thermal Shock Resistance, points 16
20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.015
0
Chromium (Cr), % 20 to 23
0
Copper (Cu), % 0
80 to 83
Iron (Fe), % 72.8 to 80
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.050 to 0.8
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
3.5 to 4.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0 to 0.8
0
Zinc (Zn), % 0
11.5 to 16.5
Residuals, % 0
0 to 0.5