MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. Nickel 333

S44537 stainless steel belongs to the iron alloys classification, while nickel 333 belongs to the nickel alloys. They have 42% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is nickel 333.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
210
Elongation at Break, % 21
34
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.27
0.28
Rockwell B Hardness 80
85
Shear Modulus, GPa 79
81
Shear Strength, MPa 320
420
Tensile Strength: Ultimate (UTS), MPa 510
630
Tensile Strength: Yield (Proof), MPa 360
270

Thermal Properties

Latent Heat of Fusion, J/g 290
320
Maximum Temperature: Mechanical, °C 1000
1010
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 21
11
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 19
55
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 3.4
8.5
Embodied Energy, MJ/kg 50
120
Embodied Water, L/kg 140
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
170
Resilience: Unit (Modulus of Resilience), kJ/m3 320
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
23
Strength to Weight: Axial, points 18
21
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 5.6
2.9
Thermal Shock Resistance, points 17
16

Alloy Composition

Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 20 to 24
24 to 27
Cobalt (Co), % 0
2.5 to 4.0
Copper (Cu), % 0 to 0.5
0
Iron (Fe), % 69 to 78.6
9.3 to 24.5
Lanthanum (La), % 0.040 to 0.2
0
Manganese (Mn), % 0 to 0.8
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 4.0
Nickel (Ni), % 0 to 0.5
44 to 48
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0 to 0.030
Silicon (Si), % 0.1 to 0.6
0 to 1.5
Sulfur (S), % 0 to 0.0060
0 to 0.030
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
2.5 to 4.0