MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C22000 Bronze

S44537 stainless steel belongs to the iron alloys classification, while C22000 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C22000 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
1.9 to 45
Poisson's Ratio 0.27
0.33
Rockwell B Hardness 80
42 to 81
Shear Modulus, GPa 79
42
Shear Strength, MPa 320
200 to 300
Tensile Strength: Ultimate (UTS), MPa 510
260 to 520
Tensile Strength: Yield (Proof), MPa 360
69 to 500

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1480
1040
Melting Onset (Solidus), °C 1430
1020
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
190
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
44
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
45

Otherwise Unclassified Properties

Base Metal Price, % relative 19
29
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 3.4
2.6
Embodied Energy, MJ/kg 50
42
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
3.7 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 320
21 to 1110
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 18
8.1 to 17
Strength to Weight: Bending, points 18
10 to 17
Thermal Diffusivity, mm2/s 5.6
56
Thermal Shock Resistance, points 17
8.8 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
89 to 91
Iron (Fe), % 69 to 78.6
0 to 0.050
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.8
0
Nickel (Ni), % 0 to 0.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0
Sulfur (S), % 0 to 0.0060
0
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
8.7 to 11
Residuals, % 0
0 to 0.2