MakeItFrom.com
Menu (ESC)

S44537 Stainless Steel vs. C73100 Nickel Silver

S44537 stainless steel belongs to the iron alloys classification, while C73100 nickel silver belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S44537 stainless steel and the bottom bar is C73100 nickel silver.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 21
3.4 to 8.0
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
43
Shear Strength, MPa 320
260 to 370
Tensile Strength: Ultimate (UTS), MPa 510
450 to 640
Tensile Strength: Yield (Proof), MPa 360
420 to 590

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1480
1030
Melting Onset (Solidus), °C 1430
1000
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 21
35
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.6
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 3.0
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 19
28
Density, g/cm3 7.9
8.4
Embodied Carbon, kg CO2/kg material 3.4
3.0
Embodied Energy, MJ/kg 50
49
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
21 to 35
Resilience: Unit (Modulus of Resilience), kJ/m3 320
790 to 1560
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 18
15 to 21
Strength to Weight: Bending, points 18
15 to 20
Thermal Diffusivity, mm2/s 5.6
11
Thermal Shock Resistance, points 17
15 to 21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.1
0
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 20 to 24
0
Copper (Cu), % 0 to 0.5
70.8 to 78
Iron (Fe), % 69 to 78.6
0 to 0.1
Lanthanum (La), % 0.040 to 0.2
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.8
0 to 0.5
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Phosphorus (P), % 0 to 0.050
0
Silicon (Si), % 0.1 to 0.6
0
Sulfur (S), % 0 to 0.0060
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0.020 to 0.2
0
Tungsten (W), % 1.0 to 3.0
0
Zinc (Zn), % 0
18 to 22
Residuals, % 0
0 to 0.5