MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. ASTM A182 Grade F3VCb

Both S44627 stainless steel and ASTM A182 grade F3VCb are iron alloys. Both are furnished in the annealed condition. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is ASTM A182 grade F3VCb.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 24
21
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.27
0.29
Reduction in Area, % 51
50
Shear Modulus, GPa 80
74
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 490
670
Tensile Strength: Yield (Proof), MPa 300
460

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1100
470
Melting Completion (Liquidus), °C 1440
1470
Melting Onset (Solidus), °C 1400
1430
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 14
4.5
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 2.9
2.4
Embodied Energy, MJ/kg 41
33
Embodied Water, L/kg 160
64

Common Calculations

PREN (Pitting Resistance) 30
6.3
Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
120
Resilience: Unit (Modulus of Resilience), kJ/m3 220
570
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 16
19

Alloy Composition

Calcium (Ca), % 0
0.00050 to 0.015
Carbon (C), % 0 to 0.010
0.1 to 0.15
Chromium (Cr), % 25 to 27.5
2.7 to 3.3
Copper (Cu), % 0 to 0.2
0 to 0.25
Iron (Fe), % 69.2 to 74.2
93.8 to 95.8
Manganese (Mn), % 0 to 0.4
0.3 to 0.6
Molybdenum (Mo), % 0.75 to 1.5
0.9 to 1.1
Nickel (Ni), % 0 to 0.5
0 to 0.25
Niobium (Nb), % 0.050 to 0.2
0.015 to 0.070
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.010
Titanium (Ti), % 0
0 to 0.015
Vanadium (V), % 0
0.2 to 0.3