MakeItFrom.com
Menu (ESC)

S44627 Stainless Steel vs. C94400 Bronze

S44627 stainless steel belongs to the iron alloys classification, while C94400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S44627 stainless steel and the bottom bar is C94400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
55
Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 24
18
Poisson's Ratio 0.27
0.35
Shear Modulus, GPa 80
37
Tensile Strength: Ultimate (UTS), MPa 490
220
Tensile Strength: Yield (Proof), MPa 300
110

Thermal Properties

Latent Heat of Fusion, J/g 290
180
Maximum Temperature: Mechanical, °C 1100
150
Melting Completion (Liquidus), °C 1440
940
Melting Onset (Solidus), °C 1400
790
Specific Heat Capacity, J/kg-K 480
350
Thermal Conductivity, W/m-K 17
52
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
10
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
9.9

Otherwise Unclassified Properties

Base Metal Price, % relative 14
32
Density, g/cm3 7.7
9.1
Embodied Carbon, kg CO2/kg material 2.9
3.4
Embodied Energy, MJ/kg 41
54
Embodied Water, L/kg 160
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
33
Resilience: Unit (Modulus of Resilience), kJ/m3 220
60
Stiffness to Weight: Axial, points 15
6.1
Stiffness to Weight: Bending, points 25
17
Strength to Weight: Axial, points 18
6.8
Strength to Weight: Bending, points 18
9.0
Thermal Diffusivity, mm2/s 4.6
17
Thermal Shock Resistance, points 16
8.3

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 25 to 27.5
0
Copper (Cu), % 0 to 0.2
76.1 to 84
Iron (Fe), % 69.2 to 74.2
0 to 0.15
Lead (Pb), % 0
9.0 to 12
Manganese (Mn), % 0 to 0.4
0
Molybdenum (Mo), % 0.75 to 1.5
0
Nickel (Ni), % 0 to 0.5
0 to 1.0
Niobium (Nb), % 0.050 to 0.2
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.4
0 to 0.0050
Sulfur (S), % 0 to 0.020
0 to 0.080
Tin (Sn), % 0
7.0 to 9.0
Zinc (Zn), % 0
0 to 0.8