MakeItFrom.com
Menu (ESC)

S44700 Stainless Steel vs. C40500 Penny Bronze

S44700 stainless steel belongs to the iron alloys classification, while C40500 penny bronze belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is S44700 stainless steel and the bottom bar is C40500 penny bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 23
3.0 to 49
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 82
43
Shear Strength, MPa 380
210 to 310
Tensile Strength: Ultimate (UTS), MPa 600
270 to 540
Tensile Strength: Yield (Proof), MPa 450
79 to 520

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
190
Melting Completion (Liquidus), °C 1460
1060
Melting Onset (Solidus), °C 1410
1020
Specific Heat Capacity, J/kg-K 480
380
Thermal Expansion, µm/m-K 11
18

Otherwise Unclassified Properties

Base Metal Price, % relative 18
30
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 3.6
2.7
Embodied Energy, MJ/kg 49
43
Embodied Water, L/kg 180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
16 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 480
28 to 1200
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.5 to 17
Strength to Weight: Bending, points 20
10 to 17
Thermal Shock Resistance, points 19
9.5 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 28 to 30
0
Copper (Cu), % 0 to 0.15
94 to 96
Iron (Fe), % 64.9 to 68.5
0 to 0.050
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 0.3
0
Molybdenum (Mo), % 3.5 to 4.2
0
Nickel (Ni), % 0 to 0.15
0
Nitrogen (N), % 0 to 0.020
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.2
0
Sulfur (S), % 0 to 0.020
0
Tin (Sn), % 0
0.7 to 1.3
Zinc (Zn), % 0
2.1 to 5.3
Residuals, % 0
0 to 0.5