MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. 535.0 Aluminum

S45000 stainless steel belongs to the iron alloys classification, while 535.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is 535.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
70
Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 6.8 to 14
10
Fatigue Strength, MPa 330 to 650
70
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
25
Shear Strength, MPa 590 to 830
190
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
270
Tensile Strength: Yield (Proof), MPa 580 to 1310
140

Thermal Properties

Latent Heat of Fusion, J/g 280
390
Maximum Temperature: Mechanical, °C 840
170
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 17
100
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
79

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 2.8
9.4
Embodied Energy, MJ/kg 39
160
Embodied Water, L/kg 130
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
24
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
150
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 35 to 50
28
Strength to Weight: Bending, points 28 to 36
35
Thermal Diffusivity, mm2/s 4.5
42
Thermal Shock Resistance, points 33 to 47
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.5 to 93.6
Beryllium (Be), % 0
0.0030 to 0.0070
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
0 to 0.050
Iron (Fe), % 72.1 to 79.3
0 to 0.15
Magnesium (Mg), % 0
6.2 to 7.5
Manganese (Mn), % 0 to 1.0
0.1 to 0.25
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.25
Residuals, % 0
0 to 0.15