MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. 772.0 Aluminum

S45000 stainless steel belongs to the iron alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 6.8 to 14
6.3 to 8.4
Fatigue Strength, MPa 330 to 650
94 to 160
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
260 to 320
Tensile Strength: Yield (Proof), MPa 580 to 1310
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 840
180
Melting Completion (Liquidus), °C 1440
630
Melting Onset (Solidus), °C 1390
580
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 17
150
Thermal Expansion, µm/m-K 11
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
35
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
110

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.8
3.0
Embodied Carbon, kg CO2/kg material 2.8
8.0
Embodied Energy, MJ/kg 39
150
Embodied Water, L/kg 130
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
16 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
350 to 430
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 35 to 50
25 to 31
Strength to Weight: Bending, points 28 to 36
31 to 36
Thermal Diffusivity, mm2/s 4.5
58
Thermal Shock Resistance, points 33 to 47
11 to 14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0.060 to 0.2
Copper (Cu), % 1.3 to 1.8
0 to 0.1
Iron (Fe), % 72.1 to 79.3
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 1.0
0 to 0.1
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15