MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. EN 1.5510 Steel

Both S45000 stainless steel and EN 1.5510 steel are iron alloys. They have 77% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is EN 1.5510 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 280 to 410
130 to 190
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 6.8 to 14
11 to 21
Fatigue Strength, MPa 330 to 650
220 to 330
Poisson's Ratio 0.28
0.29
Reduction in Area, % 22 to 50
62 to 72
Shear Modulus, GPa 76
73
Shear Strength, MPa 590 to 830
310 to 380
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
450 to 1600
Tensile Strength: Yield (Proof), MPa 580 to 1310
310 to 520

Thermal Properties

Latent Heat of Fusion, J/g 280
250
Maximum Temperature: Mechanical, °C 840
400
Melting Completion (Liquidus), °C 1440
1460
Melting Onset (Solidus), °C 1390
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 17
51
Thermal Expansion, µm/m-K 11
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 13
1.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.8
1.4
Embodied Energy, MJ/kg 39
19
Embodied Water, L/kg 130
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
46 to 260
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
260 to 710
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 35 to 50
16 to 57
Strength to Weight: Bending, points 28 to 36
17 to 39
Thermal Diffusivity, mm2/s 4.5
14
Thermal Shock Resistance, points 33 to 47
13 to 47

Alloy Composition

Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0 to 0.050
0.25 to 0.3
Chromium (Cr), % 14 to 16
0 to 0.3
Copper (Cu), % 1.3 to 1.8
0 to 0.25
Iron (Fe), % 72.1 to 79.3
97.9 to 99.149
Manganese (Mn), % 0 to 1.0
0.6 to 0.9
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025