MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. Grade 38 Titanium

S45000 stainless steel belongs to the iron alloys classification, while grade 38 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is grade 38 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
11
Fatigue Strength, MPa 330 to 650
530
Poisson's Ratio 0.28
0.32
Reduction in Area, % 22 to 50
29
Shear Modulus, GPa 76
40
Shear Strength, MPa 590 to 830
600
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
1000
Tensile Strength: Yield (Proof), MPa 580 to 1310
910

Thermal Properties

Latent Heat of Fusion, J/g 280
410
Maximum Temperature: Mechanical, °C 840
330
Melting Completion (Liquidus), °C 1440
1620
Melting Onset (Solidus), °C 1390
1570
Specific Heat Capacity, J/kg-K 480
550
Thermal Conductivity, W/m-K 17
8.0
Thermal Expansion, µm/m-K 11
9.3

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
1.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 13
36
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.8
35
Embodied Energy, MJ/kg 39
560
Embodied Water, L/kg 130
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
110
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
3840
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 35 to 50
62
Strength to Weight: Bending, points 28 to 36
49
Thermal Diffusivity, mm2/s 4.5
3.2
Thermal Shock Resistance, points 33 to 47
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.5 to 4.5
Carbon (C), % 0 to 0.050
0 to 0.080
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.1 to 79.3
1.2 to 1.8
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0.2 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
89.9 to 93.1
Vanadium (V), % 0
2.0 to 3.0
Residuals, % 0
0 to 0.4