MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. Titanium 6-2-4-2

S45000 stainless steel belongs to the iron alloys classification, while titanium 6-2-4-2 belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is titanium 6-2-4-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
8.6
Fatigue Strength, MPa 330 to 650
490
Poisson's Ratio 0.28
0.32
Reduction in Area, % 22 to 50
21
Shear Modulus, GPa 76
40
Shear Strength, MPa 590 to 830
560
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
950
Tensile Strength: Yield (Proof), MPa 580 to 1310
880

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 840
300
Melting Completion (Liquidus), °C 1440
1590
Melting Onset (Solidus), °C 1390
1540
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 17
6.9
Thermal Expansion, µm/m-K 11
9.5

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
0.9
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 13
42
Density, g/cm3 7.8
4.6
Embodied Carbon, kg CO2/kg material 2.8
32
Embodied Energy, MJ/kg 39
520
Embodied Water, L/kg 130
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
79
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
3640
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
34
Strength to Weight: Axial, points 35 to 50
57
Strength to Weight: Bending, points 28 to 36
46
Thermal Diffusivity, mm2/s 4.5
2.8
Thermal Shock Resistance, points 33 to 47
67

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.5
Carbon (C), % 0 to 0.050
0 to 0.050
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 72.1 to 79.3
0 to 0.25
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
1.8 to 2.2
Nickel (Ni), % 5.0 to 7.0
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.15
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0.060 to 0.12
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
1.8 to 2.2
Titanium (Ti), % 0
83.7 to 87.2
Zirconium (Zr), % 0
3.6 to 4.4
Residuals, % 0
0 to 0.4