MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C11100 Copper

S45000 stainless steel belongs to the iron alloys classification, while C11100 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C11100 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 6.8 to 14
1.5
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 590 to 830
230
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
460
Tensile Strength: Yield (Proof), MPa 580 to 1310
420

Thermal Properties

Latent Heat of Fusion, J/g 280
210
Maximum Temperature: Mechanical, °C 840
200
Melting Completion (Liquidus), °C 1440
1080
Melting Onset (Solidus), °C 1390
1070
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
390
Thermal Expansion, µm/m-K 11
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
100
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
100

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
9.0
Embodied Carbon, kg CO2/kg material 2.8
2.6
Embodied Energy, MJ/kg 39
41
Embodied Water, L/kg 130
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
6.6
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
750
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 50
14
Strength to Weight: Bending, points 28 to 36
15
Thermal Diffusivity, mm2/s 4.5
110
Thermal Shock Resistance, points 33 to 47
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
99.9 to 100
Iron (Fe), % 72.1 to 79.3
0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.1