MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C27200 Brass

S45000 stainless steel belongs to the iron alloys classification, while C27200 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C27200 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
10 to 50
Poisson's Ratio 0.28
0.31
Shear Modulus, GPa 76
40
Shear Strength, MPa 590 to 830
230 to 320
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
370 to 590
Tensile Strength: Yield (Proof), MPa 580 to 1310
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 280
170
Maximum Temperature: Mechanical, °C 840
130
Melting Completion (Liquidus), °C 1440
920
Melting Onset (Solidus), °C 1390
870
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 17
120
Thermal Expansion, µm/m-K 11
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
28
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
31

Otherwise Unclassified Properties

Base Metal Price, % relative 13
24
Density, g/cm3 7.8
8.1
Embodied Carbon, kg CO2/kg material 2.8
2.7
Embodied Energy, MJ/kg 39
45
Embodied Water, L/kg 130
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
30 to 270
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
110 to 810
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 50
13 to 20
Strength to Weight: Bending, points 28 to 36
14 to 19
Thermal Diffusivity, mm2/s 4.5
37
Thermal Shock Resistance, points 33 to 47
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
62 to 65
Iron (Fe), % 72.1 to 79.3
0 to 0.070
Lead (Pb), % 0
0 to 0.070
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
34.6 to 38
Residuals, % 0
0 to 0.3