MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C68800 Brass

S45000 stainless steel belongs to the iron alloys classification, while C68800 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C68800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
2.0 to 36
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 76
41
Shear Strength, MPa 590 to 830
380 to 510
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
570 to 890
Tensile Strength: Yield (Proof), MPa 580 to 1310
390 to 790

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 840
160
Melting Completion (Liquidus), °C 1440
960
Melting Onset (Solidus), °C 1390
950
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 17
40
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
18
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
20

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
2.8
Embodied Energy, MJ/kg 39
48
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
16 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
710 to 2860
Stiffness to Weight: Axial, points 14
7.3
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 35 to 50
19 to 30
Strength to Weight: Bending, points 28 to 36
19 to 25
Thermal Diffusivity, mm2/s 4.5
12
Thermal Shock Resistance, points 33 to 47
19 to 30

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
3.0 to 3.8
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Cobalt (Co), % 0
0.25 to 0.55
Copper (Cu), % 1.3 to 1.8
70.8 to 75.5
Iron (Fe), % 72.1 to 79.3
0 to 0.2
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
21.3 to 24.1
Residuals, % 0
0 to 0.5