MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C83600 Ounce Metal

S45000 stainless steel belongs to the iron alloys classification, while C83600 ounce metal belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C83600 ounce metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
21
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
39
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
250
Tensile Strength: Yield (Proof), MPa 580 to 1310
120

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 840
160
Melting Completion (Liquidus), °C 1440
1010
Melting Onset (Solidus), °C 1390
850
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
72
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
15
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
15

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 2.8
3.1
Embodied Energy, MJ/kg 39
50
Embodied Water, L/kg 130
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
43
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
70
Stiffness to Weight: Axial, points 14
6.7
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 50
7.9
Strength to Weight: Bending, points 28 to 36
10
Thermal Diffusivity, mm2/s 4.5
22
Thermal Shock Resistance, points 33 to 47
9.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
84 to 86
Iron (Fe), % 72.1 to 79.3
0 to 0.3
Lead (Pb), % 0
4.0 to 6.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.080
Tin (Sn), % 0
4.0 to 6.0
Zinc (Zn), % 0
4.0 to 6.0
Residuals, % 0
0 to 0.7