MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C92200 Bronze

S45000 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 6.8 to 14
25
Fatigue Strength, MPa 330 to 650
76
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
41
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
280
Tensile Strength: Yield (Proof), MPa 580 to 1310
140

Thermal Properties

Latent Heat of Fusion, J/g 280
190
Maximum Temperature: Mechanical, °C 840
170
Melting Completion (Liquidus), °C 1440
990
Melting Onset (Solidus), °C 1390
830
Specific Heat Capacity, J/kg-K 480
370
Thermal Conductivity, W/m-K 17
70
Thermal Expansion, µm/m-K 11
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 7.8
8.7
Embodied Carbon, kg CO2/kg material 2.8
3.2
Embodied Energy, MJ/kg 39
52
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
58
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
87
Stiffness to Weight: Axial, points 14
6.9
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 35 to 50
8.9
Strength to Weight: Bending, points 28 to 36
11
Thermal Diffusivity, mm2/s 4.5
21
Thermal Shock Resistance, points 33 to 47
9.9

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
86 to 90
Iron (Fe), % 72.1 to 79.3
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7