MakeItFrom.com
Menu (ESC)

S45000 Stainless Steel vs. C95700 Bronze

S45000 stainless steel belongs to the iron alloys classification, while C95700 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is S45000 stainless steel and the bottom bar is C95700 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
130
Elongation at Break, % 6.8 to 14
23
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
47
Tensile Strength: Ultimate (UTS), MPa 980 to 1410
680
Tensile Strength: Yield (Proof), MPa 580 to 1310
310

Thermal Properties

Latent Heat of Fusion, J/g 280
230
Maximum Temperature: Mechanical, °C 840
220
Melting Completion (Liquidus), °C 1440
990
Melting Onset (Solidus), °C 1390
950
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 17
12
Thermal Expansion, µm/m-K 11
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 13
26
Density, g/cm3 7.8
8.2
Embodied Carbon, kg CO2/kg material 2.8
3.3
Embodied Energy, MJ/kg 39
54
Embodied Water, L/kg 130
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94 to 160
130
Resilience: Unit (Modulus of Resilience), kJ/m3 850 to 4400
390
Stiffness to Weight: Axial, points 14
8.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 35 to 50
23
Strength to Weight: Bending, points 28 to 36
21
Thermal Diffusivity, mm2/s 4.5
3.3
Thermal Shock Resistance, points 33 to 47
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
7.0 to 8.5
Carbon (C), % 0 to 0.050
0
Chromium (Cr), % 14 to 16
0
Copper (Cu), % 1.3 to 1.8
71 to 78.5
Iron (Fe), % 72.1 to 79.3
2.0 to 4.0
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
11 to 14
Molybdenum (Mo), % 0.5 to 1.0
0
Nickel (Ni), % 5.0 to 7.0
1.5 to 3.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5