MakeItFrom.com
Menu (ESC)

S45503 Stainless Steel vs. 6023 Aluminum

S45503 stainless steel belongs to the iron alloys classification, while 6023 aluminum belongs to the aluminum alloys. There are 25 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S45503 stainless steel and the bottom bar is 6023 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.6 to 6.8
11
Fatigue Strength, MPa 710 to 800
120 to 130
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 75
26
Shear Strength, MPa 940 to 1070
210 to 220
Tensile Strength: Ultimate (UTS), MPa 1610 to 1850
360
Tensile Strength: Yield (Proof), MPa 1430 to 1700
300 to 310

Thermal Properties

Latent Heat of Fusion, J/g 270
400
Maximum Temperature: Mechanical, °C 760
160
Melting Completion (Liquidus), °C 1440
640
Melting Onset (Solidus), °C 1400
580
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 15
11
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 3.4
8.3
Embodied Energy, MJ/kg 48
150
Embodied Water, L/kg 120
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 82 to 110
38 to 39
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 57 to 65
35 to 36
Strength to Weight: Bending, points 39 to 43
40
Thermal Shock Resistance, points 56 to 64
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
94 to 97.7
Bismuth (Bi), % 0
0.3 to 0.8
Carbon (C), % 0 to 0.010
0
Chromium (Cr), % 11 to 12.5
0
Copper (Cu), % 1.5 to 2.5
0.2 to 0.5
Iron (Fe), % 72.4 to 78.9
0 to 0.5
Magnesium (Mg), % 0
0.4 to 0.9
Manganese (Mn), % 0 to 0.5
0.2 to 0.6
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 7.5 to 9.5
0
Niobium (Nb), % 0.1 to 0.5
0
Phosphorus (P), % 0 to 0.010
0
Silicon (Si), % 0 to 0.2
0.6 to 1.4
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0.6 to 1.2
Titanium (Ti), % 1.0 to 1.4
0
Residuals, % 0
0 to 0.15