MakeItFrom.com
Menu (ESC)

S46500 Stainless Steel vs. 772.0 Aluminum

S46500 stainless steel belongs to the iron alloys classification, while 772.0 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S46500 stainless steel and the bottom bar is 772.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 2.3 to 14
6.3 to 8.4
Fatigue Strength, MPa 550 to 890
94 to 160
Poisson's Ratio 0.28
0.32
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 1260 to 1930
260 to 320
Tensile Strength: Yield (Proof), MPa 1120 to 1810
220 to 250

Thermal Properties

Latent Heat of Fusion, J/g 280
380
Maximum Temperature: Mechanical, °C 780
180
Melting Completion (Liquidus), °C 1450
630
Melting Onset (Solidus), °C 1410
580
Specific Heat Capacity, J/kg-K 470
870
Thermal Expansion, µm/m-K 11
24

Otherwise Unclassified Properties

Base Metal Price, % relative 15
9.5
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 3.6
8.0
Embodied Energy, MJ/kg 51
150
Embodied Water, L/kg 120
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 210
16 to 25
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 44 to 68
25 to 31
Strength to Weight: Bending, points 33 to 44
31 to 36
Thermal Shock Resistance, points 44 to 67
11 to 14

Alloy Composition

Aluminum (Al), % 0
91.2 to 93.2
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 11 to 12.5
0.060 to 0.2
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 72.6 to 76.1
0 to 0.15
Magnesium (Mg), % 0
0.6 to 0.8
Manganese (Mn), % 0 to 0.25
0 to 0.1
Molybdenum (Mo), % 0.75 to 1.3
0
Nickel (Ni), % 10.7 to 11.3
0
Nitrogen (N), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.015
0
Silicon (Si), % 0 to 0.25
0 to 0.15
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 1.5 to 1.8
0.1 to 0.2
Zinc (Zn), % 0
6.0 to 7.0
Residuals, % 0
0 to 0.15