MakeItFrom.com
Menu (ESC)

S46910 Stainless Steel vs. 6018 Aluminum

S46910 stainless steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 26 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is S46910 stainless steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 2.2 to 11
9.0 to 9.1
Fatigue Strength, MPa 250 to 1020
85 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Shear Strength, MPa 410 to 1410
170 to 180
Tensile Strength: Ultimate (UTS), MPa 680 to 2470
290 to 300
Tensile Strength: Yield (Proof), MPa 450 to 2290
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 280
400
Maximum Temperature: Mechanical, °C 810
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Expansion, µm/m-K 11
23

Otherwise Unclassified Properties

Base Metal Price, % relative 18
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 4.1
8.2
Embodied Energy, MJ/kg 55
150
Embodied Water, L/kg 140
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 130
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 4780
360 to 380
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 24 to 86
28 to 29
Strength to Weight: Bending, points 22 to 51
34 to 35
Thermal Shock Resistance, points 23 to 84
13

Alloy Composition

Aluminum (Al), % 0.15 to 0.5
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11 to 13
0 to 0.1
Copper (Cu), % 1.5 to 3.5
0.15 to 0.4
Iron (Fe), % 65 to 76
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 1.0
0.3 to 0.8
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 8.0 to 10
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
0.5 to 1.2
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.5 to 1.2
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15

Comparable Variants