MakeItFrom.com
Menu (ESC)

S46910 Stainless Steel vs. CC380H Copper-nickel

S46910 stainless steel belongs to the iron alloys classification, while CC380H copper-nickel belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is S46910 stainless steel and the bottom bar is CC380H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 270 to 630
80
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 2.2 to 11
26
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
47
Tensile Strength: Ultimate (UTS), MPa 680 to 2470
310
Tensile Strength: Yield (Proof), MPa 450 to 2290
120

Thermal Properties

Latent Heat of Fusion, J/g 280
220
Maximum Temperature: Mechanical, °C 810
220
Melting Completion (Liquidus), °C 1460
1130
Melting Onset (Solidus), °C 1420
1080
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 18
36
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.1
3.8
Embodied Energy, MJ/kg 55
58
Embodied Water, L/kg 140
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 48 to 130
65
Resilience: Unit (Modulus of Resilience), kJ/m3 510 to 4780
59
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24 to 86
9.8
Strength to Weight: Bending, points 22 to 51
12
Thermal Shock Resistance, points 23 to 84
11

Alloy Composition

Aluminum (Al), % 0.15 to 0.5
0 to 0.010
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 11 to 13
0
Copper (Cu), % 1.5 to 3.5
84.5 to 89
Iron (Fe), % 65 to 76
1.0 to 1.8
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
1.0 to 1.5
Molybdenum (Mo), % 3.0 to 5.0
0
Nickel (Ni), % 8.0 to 10
9.0 to 11
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.5 to 1.2
0
Zinc (Zn), % 0
0 to 0.5