MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. EN 1.5520 Steel

Both S66286 stainless steel and EN 1.5520 steel are iron alloys. They have 56% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is EN 1.5520 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 17 to 40
11 to 21
Fatigue Strength, MPa 240 to 410
210 to 300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Shear Strength, MPa 420 to 630
290 to 340
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
410 to 1410
Tensile Strength: Yield (Proof), MPa 280 to 670
300 to 480

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 920
400
Melting Completion (Liquidus), °C 1430
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
50
Thermal Expansion, µm/m-K 17
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
8.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
1.9
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
1.4
Embodied Energy, MJ/kg 87
19
Embodied Water, L/kg 170
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
42 to 230
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
240 to 600
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 36
15 to 50
Strength to Weight: Bending, points 20 to 28
16 to 36
Thermal Diffusivity, mm2/s 4.0
13
Thermal Shock Resistance, points 13 to 22
12 to 41

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0.00080 to 0.0050
Carbon (C), % 0 to 0.080
0.15 to 0.2
Chromium (Cr), % 13.5 to 16
0 to 0.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 49.1 to 59.5
97.7 to 98.9
Manganese (Mn), % 0 to 2.0
0.9 to 1.2
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0 to 0.3
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0