MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. CC332G Bronze

S66286 stainless steel belongs to the iron alloys classification, while CC332G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is CC332G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 17 to 40
22
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
43
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
620
Tensile Strength: Yield (Proof), MPa 280 to 670
250

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 920
220
Melting Completion (Liquidus), °C 1430
1060
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 15
45
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
11
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
12

Otherwise Unclassified Properties

Base Metal Price, % relative 26
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 6.0
3.4
Embodied Energy, MJ/kg 87
55
Embodied Water, L/kg 170
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
110
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
270
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 36
21
Strength to Weight: Bending, points 20 to 28
19
Thermal Diffusivity, mm2/s 4.0
12
Thermal Shock Resistance, points 13 to 22
21

Alloy Composition

Aluminum (Al), % 0 to 0.35
8.5 to 10.5
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
80 to 86
Iron (Fe), % 49.1 to 59.5
1.0 to 3.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
1.5 to 4.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.2
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.5