MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C86300 Bronze

S66286 stainless steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 40
14
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
850
Tensile Strength: Yield (Proof), MPa 280 to 670
480

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
160
Melting Completion (Liquidus), °C 1430
920
Melting Onset (Solidus), °C 1370
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 15
35
Thermal Expansion, µm/m-K 17
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 26
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 6.0
3.0
Embodied Energy, MJ/kg 87
51
Embodied Water, L/kg 170
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
100
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
1030
Stiffness to Weight: Axial, points 14
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 22 to 36
30
Strength to Weight: Bending, points 20 to 28
25
Thermal Diffusivity, mm2/s 4.0
11
Thermal Shock Resistance, points 13 to 22
28

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.35
5.0 to 7.5
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 49.1 to 59.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0