MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. C90200 Bronze

S66286 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17 to 40
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
41
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
260
Tensile Strength: Yield (Proof), MPa 280 to 670
110

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 920
180
Melting Completion (Liquidus), °C 1430
1050
Melting Onset (Solidus), °C 1370
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 15
62
Thermal Expansion, µm/m-K 17
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
13
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
13

Otherwise Unclassified Properties

Base Metal Price, % relative 26
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 6.0
3.3
Embodied Energy, MJ/kg 87
53
Embodied Water, L/kg 170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
63
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
55
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 22 to 36
8.3
Strength to Weight: Bending, points 20 to 28
10
Thermal Diffusivity, mm2/s 4.0
19
Thermal Shock Resistance, points 13 to 22
9.5

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0 to 0.35
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0
Chromium (Cr), % 13.5 to 16
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 49.1 to 59.5
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 1.0 to 1.5
0
Nickel (Ni), % 24 to 27
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6