MakeItFrom.com
Menu (ESC)

S66286 Stainless Steel vs. N08700 Stainless Steel

Both S66286 stainless steel and N08700 stainless steel are iron alloys. They have 90% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is S66286 stainless steel and the bottom bar is N08700 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 17 to 40
32
Fatigue Strength, MPa 240 to 410
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 75
79
Shear Strength, MPa 420 to 630
410
Tensile Strength: Ultimate (UTS), MPa 620 to 1020
620
Tensile Strength: Yield (Proof), MPa 280 to 670
270

Thermal Properties

Latent Heat of Fusion, J/g 300
300
Maximum Temperature: Corrosion, °C 780
460
Maximum Temperature: Mechanical, °C 920
1100
Melting Completion (Liquidus), °C 1430
1450
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 17
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.9
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.2
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 26
32
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 6.0
6.0
Embodied Energy, MJ/kg 87
82
Embodied Water, L/kg 170
200

Common Calculations

PREN (Pitting Resistance) 19
36
Resilience: Ultimate (Unit Rupture Work), MJ/m3 150 to 200
160
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 1150
180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 22 to 36
21
Strength to Weight: Bending, points 20 to 28
20
Thermal Diffusivity, mm2/s 4.0
3.5
Thermal Shock Resistance, points 13 to 22
14

Alloy Composition

Aluminum (Al), % 0 to 0.35
0
Boron (B), % 0.0010 to 0.010
0
Carbon (C), % 0 to 0.080
0 to 0.040
Chromium (Cr), % 13.5 to 16
19 to 23
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 49.1 to 59.5
42 to 52.7
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 1.0 to 1.5
4.3 to 5.0
Nickel (Ni), % 24 to 27
24 to 26
Niobium (Nb), % 0
0 to 0.4
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 1.9 to 2.4
0
Vanadium (V), % 0.1 to 0.5
0