MakeItFrom.com
Menu (ESC)

WE43A Magnesium vs. EN 1.4594 Stainless Steel

WE43A magnesium belongs to the magnesium alloys classification, while EN 1.4594 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43A magnesium and the bottom bar is EN 1.4594 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 5.2 to 5.4
11 to 17
Fatigue Strength, MPa 85 to 120
490 to 620
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 17
76
Shear Strength, MPa 160
620 to 700
Tensile Strength: Ultimate (UTS), MPa 250 to 270
1020 to 1170
Tensile Strength: Yield (Proof), MPa 160 to 170
810 to 1140

Thermal Properties

Latent Heat of Fusion, J/g 330
280
Maximum Temperature: Mechanical, °C 180
820
Melting Completion (Liquidus), °C 640
1450
Melting Onset (Solidus), °C 570
1410
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 51
16
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 12
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 55
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 34
15
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 28
3.2
Embodied Energy, MJ/kg 250
45
Embodied Water, L/kg 910
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 12
110 to 190
Resilience: Unit (Modulus of Resilience), kJ/m3 280 to 310
1660 to 3320
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 61
25
Strength to Weight: Axial, points 36 to 39
36 to 41
Strength to Weight: Bending, points 46 to 48
29 to 31
Thermal Diffusivity, mm2/s 28
4.4
Thermal Shock Resistance, points 15 to 16
34 to 39

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
13 to 15
Copper (Cu), % 0 to 0.030
1.2 to 2.0
Iron (Fe), % 0 to 0.010
72.6 to 79.5
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.5 to 93.5
0
Manganese (Mn), % 0 to 0.15
0 to 1.0
Molybdenum (Mo), % 0
1.2 to 2.0
Nickel (Ni), % 0 to 0.0050
5.0 to 6.0
Niobium (Nb), % 0
0.15 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.010
0 to 0.7
Sulfur (S), % 0
0 to 0.015
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0