MakeItFrom.com
Menu (ESC)

WE43B Magnesium vs. AISI 446 Stainless Steel

WE43B magnesium belongs to the magnesium alloys classification, while AISI 446 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE43B magnesium and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 44
200
Elongation at Break, % 2.2
23
Fatigue Strength, MPa 110
200
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 17
79
Shear Strength, MPa 140
360
Tensile Strength: Ultimate (UTS), MPa 250
570
Tensile Strength: Yield (Proof), MPa 200
300

Thermal Properties

Latent Heat of Fusion, J/g 330
290
Maximum Temperature: Mechanical, °C 180
1180
Melting Completion (Liquidus), °C 640
1510
Melting Onset (Solidus), °C 550
1430
Specific Heat Capacity, J/kg-K 960
490
Thermal Conductivity, W/m-K 51
17
Thermal Expansion, µm/m-K 27
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 11
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 53
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 34
12
Density, g/cm3 1.9
7.7
Embodied Carbon, kg CO2/kg material 28
2.4
Embodied Energy, MJ/kg 250
35
Embodied Water, L/kg 910
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.2
110
Resilience: Unit (Modulus of Resilience), kJ/m3 430
230
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 61
26
Strength to Weight: Axial, points 36
21
Strength to Weight: Bending, points 46
20
Thermal Diffusivity, mm2/s 28
4.6
Thermal Shock Resistance, points 15
19

Alloy Composition

Carbon (C), % 0
0 to 0.2
Chromium (Cr), % 0
23 to 27
Copper (Cu), % 0 to 0.020
0
Iron (Fe), % 0 to 0.010
69.2 to 77
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 89.8 to 93.5
0
Manganese (Mn), % 0 to 0.030
0 to 1.5
Nickel (Ni), % 0 to 0.0050
0 to 0.75
Nitrogen (N), % 0
0 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Unspecified Rare Earths, % 2.4 to 4.4
0
Yttrium (Y), % 3.7 to 4.3
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0