MakeItFrom.com
Menu (ESC)

WE54A Magnesium vs. SAE-AISI 9310 Steel

WE54A magnesium belongs to the magnesium alloys classification, while SAE-AISI 9310 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is WE54A magnesium and the bottom bar is SAE-AISI 9310 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 85
540 to 610
Elastic (Young's, Tensile) Modulus, GPa 44
190
Elongation at Break, % 4.3 to 5.6
17 to 19
Fatigue Strength, MPa 98 to 130
300 to 390
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 17
73
Shear Strength, MPa 150 to 170
510 to 570
Tensile Strength: Ultimate (UTS), MPa 270 to 300
820 to 910
Tensile Strength: Yield (Proof), MPa 180
450 to 570

Thermal Properties

Latent Heat of Fusion, J/g 330
250
Maximum Temperature: Mechanical, °C 170
440
Melting Completion (Liquidus), °C 640
1460
Melting Onset (Solidus), °C 570
1420
Specific Heat Capacity, J/kg-K 960
470
Thermal Conductivity, W/m-K 52
48
Thermal Expansion, µm/m-K 25
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 10
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 47
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 34
4.4
Density, g/cm3 1.9
7.9
Embodied Carbon, kg CO2/kg material 29
1.8
Embodied Energy, MJ/kg 260
24
Embodied Water, L/kg 900
57

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 10 to 14
120 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 360 to 380
540 to 860
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 62
24
Strength to Weight: Axial, points 39 to 43
29 to 32
Strength to Weight: Bending, points 49 to 51
25 to 27
Thermal Diffusivity, mm2/s 28
13
Thermal Shock Resistance, points 18 to 19
24 to 27

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0
0.080 to 0.13
Chromium (Cr), % 0
1.0 to 1.4
Copper (Cu), % 0 to 0.030
0
Iron (Fe), % 0 to 0.010
93.8 to 95.2
Lithium (Li), % 0 to 0.2
0
Magnesium (Mg), % 88.7 to 93.4
0
Manganese (Mn), % 0 to 0.030
0.45 to 0.65
Molybdenum (Mo), % 0
0.080 to 0.15
Nickel (Ni), % 0 to 0.0050
3.0 to 3.5
Phosphorus (P), % 0
0 to 0.015
Silicon (Si), % 0 to 0.010
0.2 to 0.35
Sulfur (S), % 0
0 to 0.012
Unspecified Rare Earths, % 1.5 to 4.0
0
Yttrium (Y), % 4.8 to 5.5
0
Zinc (Zn), % 0 to 0.2
0
Zirconium (Zr), % 0.4 to 1.0
0
Residuals, % 0 to 0.3
0