MakeItFrom.com
Menu (ESC)

1050-O Aluminum vs. Annealed S21904 Stainless Steel

1050-O aluminum belongs to the aluminum alloys classification, while annealed S21904 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1050-O aluminum and the bottom bar is annealed S21904 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 37
51
Fatigue Strength, MPa 31
380
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Shear Strength, MPa 62
510
Tensile Strength: Ultimate (UTS), MPa 76
700
Tensile Strength: Yield (Proof), MPa 25
390

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 170
980
Melting Completion (Liquidus), °C 640
1400
Melting Onset (Solidus), °C 650
1350
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
14
Thermal Expansion, µm/m-K 24
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
15
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 8.3
3.0
Embodied Energy, MJ/kg 160
43
Embodied Water, L/kg 1200
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 22
310
Resilience: Unit (Modulus of Resilience), kJ/m3 4.6
380
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.8
25
Strength to Weight: Bending, points 15
23
Thermal Diffusivity, mm2/s 94
3.8
Thermal Shock Resistance, points 3.4
15

Alloy Composition

Aluminum (Al), % 99.5 to 100
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0
19 to 21.5
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.4
59.5 to 67.4
Magnesium (Mg), % 0 to 0.050
0
Manganese (Mn), % 0 to 0.050
8.0 to 10
Nickel (Ni), % 0
5.5 to 7.5
Nitrogen (N), % 0
0.15 to 0.4
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.25
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.050
0