MakeItFrom.com
Menu (ESC)

1085 Aluminum vs. EN 1.4408 Stainless Steel

1085 aluminum belongs to the aluminum alloys classification, while EN 1.4408 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 1085 aluminum and the bottom bar is EN 1.4408 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 68
200
Elongation at Break, % 4.5 to 39
34
Fatigue Strength, MPa 22 to 49
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
78
Tensile Strength: Ultimate (UTS), MPa 73 to 140
510
Tensile Strength: Yield (Proof), MPa 17 to 120
210

Thermal Properties

Latent Heat of Fusion, J/g 400
300
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 640
1440
Melting Onset (Solidus), °C 640
1390
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 230
15
Thermal Expansion, µm/m-K 23
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 61
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 200
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
18
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 8.3
3.7
Embodied Energy, MJ/kg 160
52
Embodied Water, L/kg 1200
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 4.8 to 21
140
Resilience: Unit (Modulus of Resilience), kJ/m3 2.1 to 110
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 7.5 to 14
18
Strength to Weight: Bending, points 14 to 22
18
Thermal Diffusivity, mm2/s 94
3.9
Thermal Shock Resistance, points 3.3 to 6.1
11

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 99.85 to 100
0
Carbon (C), % 0
0 to 0.070
Chromium (Cr), % 0
18 to 20
Copper (Cu), % 0 to 0.030
0
Gallium (Ga), % 0 to 0.030
0
Iron (Fe), % 0 to 0.12
62.4 to 71
Magnesium (Mg), % 0 to 0.020
0
Manganese (Mn), % 0 to 0.020
0 to 1.5
Molybdenum (Mo), % 0
2.0 to 2.5
Nickel (Ni), % 0
9.0 to 12
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.020
0
Vanadium (V), % 0 to 0.050
0
Zinc (Zn), % 0 to 0.030
0
Residuals, % 0 to 0.010
0