MakeItFrom.com
Menu (ESC)

356.0 Aluminum vs. EN AC-43400 Aluminum

Both 356.0 aluminum and EN AC-43400 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is 356.0 aluminum and the bottom bar is EN AC-43400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 55 to 75
80
Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 2.0 to 3.8
1.1
Fatigue Strength, MPa 55 to 75
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 160 to 240
270
Tensile Strength: Yield (Proof), MPa 100 to 190
160

Thermal Properties

Latent Heat of Fusion, J/g 500
540
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 620
600
Melting Onset (Solidus), °C 570
590
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 150 to 170
140
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 40 to 43
32
Electrical Conductivity: Equal Weight (Specific), % IACS 140 to 150
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.6
Embodied Carbon, kg CO2/kg material 8.0
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1110
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.2 to 8.2
2.6
Resilience: Unit (Modulus of Resilience), kJ/m3 70 to 250
180
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 53
54
Strength to Weight: Axial, points 17 to 26
29
Strength to Weight: Bending, points 25 to 33
36
Thermal Diffusivity, mm2/s 64 to 71
59
Thermal Shock Resistance, points 7.6 to 11
12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 90.1 to 93.3
86 to 90.8
Copper (Cu), % 0 to 0.25
0 to 0.1
Iron (Fe), % 0 to 0.6
0 to 1.0
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.45
0.2 to 0.5
Manganese (Mn), % 0 to 0.35
0 to 0.55
Nickel (Ni), % 0
0 to 0.15
Silicon (Si), % 6.5 to 7.5
9.0 to 11
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 0.35
0 to 0.15
Residuals, % 0 to 0.15
0 to 0.15