MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. 5010 Aluminum

Both 413.0 aluminum and 5010 aluminum are aluminum alloys. They have 87% of their average alloy composition in common.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is 5010 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
27 to 62
Elastic (Young's, Tensile) Modulus, GPa 73
69
Elongation at Break, % 2.5
1.1 to 23
Fatigue Strength, MPa 130
35 to 83
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 28
26
Shear Strength, MPa 170
64 to 120
Tensile Strength: Ultimate (UTS), MPa 270
100 to 210
Tensile Strength: Yield (Proof), MPa 140
38 to 190

Thermal Properties

Latent Heat of Fusion, J/g 570
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 590
650
Melting Onset (Solidus), °C 580
630
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 140
200
Thermal Expansion, µm/m-K 20
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
45
Electrical Conductivity: Equal Weight (Specific), % IACS 120
150

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.6
2.7
Embodied Carbon, kg CO2/kg material 7.6
8.2
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
2.3 to 20
Resilience: Unit (Modulus of Resilience), kJ/m3 130
10 to 270
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
50
Strength to Weight: Axial, points 29
10 to 22
Strength to Weight: Bending, points 36
18 to 29
Thermal Diffusivity, mm2/s 59
82
Thermal Shock Resistance, points 13
4.5 to 9.4

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
97.1 to 99.7
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0 to 1.0
0 to 0.25
Iron (Fe), % 0 to 2.0
0 to 0.7
Magnesium (Mg), % 0 to 0.1
0.2 to 0.6
Manganese (Mn), % 0 to 0.35
0.1 to 0.3
Nickel (Ni), % 0 to 0.5
0
Silicon (Si), % 11 to 13
0 to 0.4
Tin (Sn), % 0 to 0.15
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.5
0 to 0.3
Residuals, % 0 to 0.25
0 to 0.15