MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. AISI 403 Stainless Steel

413.0 aluminum belongs to the aluminum alloys classification, while AISI 403 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.5
16 to 25
Fatigue Strength, MPa 130
200 to 340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 28
76
Shear Strength, MPa 170
340 to 480
Tensile Strength: Ultimate (UTS), MPa 270
530 to 780
Tensile Strength: Yield (Proof), MPa 140
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 570
270
Maximum Temperature: Mechanical, °C 170
740
Melting Completion (Liquidus), °C 590
1450
Melting Onset (Solidus), °C 580
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 140
28
Thermal Expansion, µm/m-K 20
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
6.5
Density, g/cm3 2.6
7.8
Embodied Carbon, kg CO2/kg material 7.6
1.9
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1040
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 130
210 to 840
Stiffness to Weight: Axial, points 16
14
Stiffness to Weight: Bending, points 53
25
Strength to Weight: Axial, points 29
19 to 28
Strength to Weight: Bending, points 36
19 to 24
Thermal Diffusivity, mm2/s 59
7.6
Thermal Shock Resistance, points 13
20 to 29

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13
Copper (Cu), % 0 to 1.0
0
Iron (Fe), % 0 to 2.0
84.7 to 88.5
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 11 to 13
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Tin (Sn), % 0 to 0.15
0
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0