MakeItFrom.com
Menu (ESC)

413.0 Aluminum vs. ASTM A182 Grade F36

413.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F36 belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 413.0 aluminum and the bottom bar is ASTM A182 grade F36.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 80
220
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 2.5
17
Fatigue Strength, MPa 130
330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 28
73
Shear Strength, MPa 170
440
Tensile Strength: Ultimate (UTS), MPa 270
710
Tensile Strength: Yield (Proof), MPa 140
490

Thermal Properties

Latent Heat of Fusion, J/g 570
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 590
1460
Melting Onset (Solidus), °C 580
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 140
39
Thermal Expansion, µm/m-K 20
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 35
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.4
Density, g/cm3 2.6
7.9
Embodied Carbon, kg CO2/kg material 7.6
1.7
Embodied Energy, MJ/kg 140
22
Embodied Water, L/kg 1040
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 5.7
110
Resilience: Unit (Modulus of Resilience), kJ/m3 130
650
Stiffness to Weight: Axial, points 16
13
Stiffness to Weight: Bending, points 53
24
Strength to Weight: Axial, points 29
25
Strength to Weight: Bending, points 36
22
Thermal Diffusivity, mm2/s 59
10
Thermal Shock Resistance, points 13
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 82.2 to 89
0 to 0.050
Carbon (C), % 0
0.1 to 0.17
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 1.0
0.5 to 0.8
Iron (Fe), % 0 to 2.0
95 to 97.1
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.35
0.8 to 1.2
Molybdenum (Mo), % 0
0.25 to 0.5
Nickel (Ni), % 0 to 0.5
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 11 to 13
0.25 to 0.5
Sulfur (S), % 0
0 to 0.025
Tin (Sn), % 0 to 0.15
0
Vanadium (V), % 0
0 to 0.020
Zinc (Zn), % 0 to 0.5
0
Residuals, % 0 to 0.25
0