MakeItFrom.com
Menu (ESC)

AISI 403 Stainless Steel vs. Grade 24 Titanium

AISI 403 stainless steel belongs to the iron alloys classification, while grade 24 titanium belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 403 stainless steel and the bottom bar is grade 24 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 16 to 25
11
Fatigue Strength, MPa 200 to 340
550
Poisson's Ratio 0.28
0.32
Reduction in Area, % 47 to 50
28
Shear Modulus, GPa 76
40
Shear Strength, MPa 340 to 480
610
Tensile Strength: Ultimate (UTS), MPa 530 to 780
1010
Tensile Strength: Yield (Proof), MPa 280 to 570
940

Thermal Properties

Latent Heat of Fusion, J/g 270
410
Maximum Temperature: Mechanical, °C 740
340
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1400
1560
Specific Heat Capacity, J/kg-K 480
560
Thermal Conductivity, W/m-K 28
7.1
Thermal Expansion, µm/m-K 9.9
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.3
2.0

Otherwise Unclassified Properties

Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.9
43
Embodied Energy, MJ/kg 27
710
Embodied Water, L/kg 99
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210 to 840
4160
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 19 to 28
63
Strength to Weight: Bending, points 19 to 24
50
Thermal Diffusivity, mm2/s 7.6
2.9
Thermal Shock Resistance, points 20 to 29
72

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 84.7 to 88.5
0 to 0.4
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0 to 0.6
0
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
87.5 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4