MakeItFrom.com
Menu (ESC)

AISI 414 Stainless Steel vs. Grade 12 Titanium

AISI 414 stainless steel belongs to the iron alloys classification, while grade 12 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is AISI 414 stainless steel and the bottom bar is grade 12 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 17
21
Fatigue Strength, MPa 430 to 480
280
Poisson's Ratio 0.28
0.32
Reduction in Area, % 50
28
Shear Modulus, GPa 76
39
Shear Strength, MPa 550 to 590
330
Tensile Strength: Ultimate (UTS), MPa 900 to 960
530
Tensile Strength: Yield (Proof), MPa 700 to 790
410

Thermal Properties

Latent Heat of Fusion, J/g 280
420
Maximum Temperature: Mechanical, °C 750
320
Melting Completion (Liquidus), °C 1440
1660
Melting Onset (Solidus), °C 1400
1610
Specific Heat Capacity, J/kg-K 480
540
Thermal Conductivity, W/m-K 25
21
Thermal Expansion, µm/m-K 10
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
3.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
6.6

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
37
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 2.1
31
Embodied Energy, MJ/kg 29
500
Embodied Water, L/kg 100
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140 to 150
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1260 to 1590
770
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
35
Strength to Weight: Axial, points 32 to 34
32
Strength to Weight: Bending, points 27 to 28
32
Thermal Diffusivity, mm2/s 6.7
8.5
Thermal Shock Resistance, points 33 to 35
37

Alloy Composition

Carbon (C), % 0 to 0.15
0 to 0.080
Chromium (Cr), % 11.5 to 13.5
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 81.8 to 87.3
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
0.2 to 0.4
Nickel (Ni), % 1.3 to 2.5
0.6 to 0.9
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
97.6 to 99.2
Residuals, % 0
0 to 0.4