MakeItFrom.com
Menu (ESC)

AISI 415 Stainless Steel vs. EN 1.0259 Steel

Both AISI 415 stainless steel and EN 1.0259 steel are iron alloys. They have 82% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AISI 415 stainless steel and the bottom bar is EN 1.0259 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
140
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 17
23
Fatigue Strength, MPa 430
200
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 76
73
Shear Strength, MPa 550
310
Tensile Strength: Ultimate (UTS), MPa 900
490
Tensile Strength: Yield (Proof), MPa 700
280

Thermal Properties

Latent Heat of Fusion, J/g 270
250
Maximum Temperature: Mechanical, °C 780
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 24
49
Thermal Expansion, µm/m-K 10
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.1
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 11
2.1
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.5
Embodied Energy, MJ/kg 35
19
Embodied Water, L/kg 110
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
95
Resilience: Unit (Modulus of Resilience), kJ/m3 1250
210
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
17
Strength to Weight: Bending, points 26
18
Thermal Diffusivity, mm2/s 6.4
13
Thermal Shock Resistance, points 33
15

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.2
Carbon (C), % 0 to 0.050
0 to 0.2
Chromium (Cr), % 11.5 to 14
0 to 0.3
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 77.8 to 84
96.7 to 99.98
Manganese (Mn), % 0.5 to 1.0
0 to 1.4
Molybdenum (Mo), % 0.5 to 1.0
0 to 0.080
Nickel (Ni), % 3.5 to 5.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.010
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
0 to 0.040
Vanadium (V), % 0
0 to 0.020