MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F23 vs. AISI 446 Stainless Steel

Both ASTM A182 grade F23 and AISI 446 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F23 and the bottom bar is AISI 446 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 22
23
Fatigue Strength, MPa 320
200
Poisson's Ratio 0.29
0.27
Reduction in Area, % 46
50
Shear Modulus, GPa 74
79
Shear Strength, MPa 360
360
Tensile Strength: Ultimate (UTS), MPa 570
570
Tensile Strength: Yield (Proof), MPa 460
300

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 450
1180
Melting Completion (Liquidus), °C 1500
1510
Melting Onset (Solidus), °C 1450
1430
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 41
17
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 7.0
12
Density, g/cm3 8.0
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.4
Embodied Energy, MJ/kg 36
35
Embodied Water, L/kg 59
150

Common Calculations

PREN (Pitting Resistance) 5.7
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
230
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
26
Strength to Weight: Axial, points 20
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 11
4.6
Thermal Shock Resistance, points 17
19

Alloy Composition

Aluminum (Al), % 0 to 0.030
0
Boron (B), % 0.0010 to 0.0060
0
Carbon (C), % 0.040 to 0.1
0 to 0.2
Chromium (Cr), % 1.9 to 2.6
23 to 27
Iron (Fe), % 93.2 to 96.2
69.2 to 77
Manganese (Mn), % 0.1 to 0.6
0 to 1.5
Molybdenum (Mo), % 0.050 to 0.3
0
Nickel (Ni), % 0 to 0.4
0 to 0.75
Niobium (Nb), % 0.020 to 0.080
0
Nitrogen (N), % 0 to 0.015
0 to 0.25
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.030
Titanium (Ti), % 0.0050 to 0.060
0
Tungsten (W), % 1.5 to 1.8
0
Vanadium (V), % 0.2 to 0.3
0