MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F3VCb vs. SAE-AISI 4161 Steel

Both ASTM A182 grade F3VCb and SAE-AISI 4161 steel are iron alloys. Both are furnished in the annealed condition. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F3VCb and the bottom bar is SAE-AISI 4161 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 210
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 320
290
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 74
73
Shear Strength, MPa 420
420
Tensile Strength: Ultimate (UTS), MPa 670
680
Tensile Strength: Yield (Proof), MPa 460
410

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 470
420
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
43
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 4.5
2.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.5
Embodied Energy, MJ/kg 33
20
Embodied Water, L/kg 64
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
120
Resilience: Unit (Modulus of Resilience), kJ/m3 570
460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 24
24
Strength to Weight: Bending, points 22
22
Thermal Diffusivity, mm2/s 11
12
Thermal Shock Resistance, points 19
22

Alloy Composition

Calcium (Ca), % 0.00050 to 0.015
0
Carbon (C), % 0.1 to 0.15
0.56 to 0.64
Chromium (Cr), % 2.7 to 3.3
0.7 to 0.9
Copper (Cu), % 0 to 0.25
0
Iron (Fe), % 93.8 to 95.8
96.7 to 97.6
Manganese (Mn), % 0.3 to 0.6
0.75 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0.25 to 0.35
Nickel (Ni), % 0 to 0.25
0
Niobium (Nb), % 0.015 to 0.070
0
Phosphorus (P), % 0 to 0.020
0 to 0.035
Silicon (Si), % 0 to 0.1
0.15 to 0.35
Sulfur (S), % 0 to 0.010
0 to 0.040
Titanium (Ti), % 0 to 0.015
0
Vanadium (V), % 0.2 to 0.3
0