MakeItFrom.com
Menu (ESC)

ASTM A182 Grade F911 vs. EN 1.4024 Stainless Steel

Both ASTM A182 grade F911 and EN 1.4024 stainless steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM A182 grade F911 and the bottom bar is EN 1.4024 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 20
15 to 22
Fatigue Strength, MPa 350
220 to 300
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 430
370 to 460
Tensile Strength: Ultimate (UTS), MPa 690
590 to 750
Tensile Strength: Yield (Proof), MPa 500
330 to 510

Thermal Properties

Latent Heat of Fusion, J/g 270
270
Maximum Temperature: Mechanical, °C 600
760
Melting Completion (Liquidus), °C 1480
1440
Melting Onset (Solidus), °C 1440
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 26
30
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 9.2
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 10
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 2.8
1.9
Embodied Energy, MJ/kg 40
27
Embodied Water, L/kg 90
100

Common Calculations

PREN (Pitting Resistance) 15
13
Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
98 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 650
280 to 660
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 24
21 to 27
Strength to Weight: Bending, points 22
20 to 24
Thermal Diffusivity, mm2/s 6.9
8.1
Thermal Shock Resistance, points 19
21 to 26

Alloy Composition

Aluminum (Al), % 0 to 0.020
0
Boron (B), % 0.00030 to 0.0060
0
Carbon (C), % 0.090 to 0.13
0.12 to 0.17
Chromium (Cr), % 8.5 to 9.5
12 to 14
Iron (Fe), % 86.2 to 88.9
83.8 to 87.9
Manganese (Mn), % 0.3 to 0.6
0 to 1.0
Molybdenum (Mo), % 0.9 to 1.1
0
Nickel (Ni), % 0 to 0.4
0
Niobium (Nb), % 0.060 to 0.1
0
Nitrogen (N), % 0.040 to 0.090
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0.1 to 0.5
0 to 1.0
Sulfur (S), % 0 to 0.010
0 to 0.015
Titanium (Ti), % 0 to 0.010
0
Tungsten (W), % 0.9 to 1.1
0
Vanadium (V), % 0.18 to 0.25
0
Zirconium (Zr), % 0 to 0.010
0